(EEE) ELECTRICAL AND ELECTRONICS ENGINEERING INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate :
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to
- the question paper booklet and also on the OMR Response Sheet.
 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet
- attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

1-B

Set Code : T2 **Booklet Code :** в

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$ 1. (2) 4 sinA cosB sinC (1) 4 cosA sinB cosC (4) $4 \sin A \sin B \sin C$ (3) 4 cosA cosB cosC The principal solution of Tanx = 0 is 2. (2) x=0(1) $x = n\pi, n \in \mathbb{Z}$ (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$ (4) $x = n\pi + \alpha, n \in \mathbb{Z}$ The value of $Tan^{-1}(2) + Tan^{-1}(3)$ is 3. $\frac{\pi}{2}$ (3) (1) (2)If the sides of a right angle triangle are in A.P., then the ratio of its sides is 4. (3) 3:4:5 (4) 4:5:6 (2) 2:3:4 (1) 1:2:3 5. The value of $r.r_1.r_2.r_3$ is (2) Δ⁻² (3) Δ⁻³. (4) Δ⁴ (1) Δ^2 6. $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$ (1) $\frac{1}{r}$ 1 (2) (4) (3)R ٨

				Set Code : 7 Booklet Code : 7	_
7.	If a=6, b=5, c=	=9, then the value of angle	Ais		
		$(2) \cos^{-1}(2/5)$		(4) $\cos^{-1}(1/3)$	
8.	The polar form	of complex number 1-i is	5	a v v g	
	(1) $\sqrt{2}e^{-i\pi/4}$	$(2) \sqrt{2} e^{i\pi/4}$	(3) $\sqrt{2} e^{i\pi/2}$	$(4) \sqrt{2} e^{-i\pi/2}$	
9.	If 1, ω , ω^2 be th	ne cube roots of unity, then			
	(1) ω	(2) ω^2	(3) 1	(4) 0	
10.	The intercent m	nade on X-axis by the circ	$le r^2 + v^2 + 2gr + 2fv + c$	= 0 is	
10.		(2) $\sqrt{f^2 - c}$			
	(1) $\sqrt{g^2-c}$	(2) $\sqrt{f^2-c}$	$(3) 2.\sqrt{g} - c$	$(4) 2.\sqrt{j} - c$	
·11.	If one end of th diameter is	ne diameter of the circle x	$x^2+y^2-5x-8y+13=0$ is	s (2, 7), then the other end of	the
	(1) (3, 1)	(2) (1, 3)	(3) (-3, -1)	(4) (-1, -3)	
10	The section - 611	he circle $\sqrt{1+m^2}(x^2+y^2)$	$2m^2 - 0$ is		
12.	(1) $2c$	(2) $4c$	(3) c/2	(4) c	
	(1) 20	(2) 10	(5) 0.2		
13.	The parametric	equations of the ellipse $\frac{2}{a}$	$\frac{x^2}{2} + \frac{y^2}{x^2} = 1$ are		
	(1) $x = a \sec \theta$		$\begin{array}{ccc} x^2 & b^2 \\ (2) & x = b \sin\theta, \end{array}$	$a = a \cos \theta$	
		$\theta, y = b \sin \theta$	(2) $x = 0 \sin \theta$, (4) $x = a \csc \theta$		
	(5) 2 4 6050	,,y 0 5110	(1)		
14.		f the directrix of the parab		(4) 8- 7-0	
	(1) $8y+7=0$	(2) $8y-7=0$	(3) $7y+8=0$	(4) $8x-7=0$	
		for a straight line $y = mx + c$		hyperbola $\frac{x^2}{y^2} - \frac{y^2}{y^2} - 1$ is	
15.	The condition f	for a straight line $y = mx + c$	to be a tangent to th	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$ is	
	(1) $c = a/m$	(2) $c^2 = a^2 m^2 - b^2$	(3) $c^2 = a^2 m^2 + c^2$	b^2 (4) $c^2 = a/m$	
	14		4.0		

Set Code : **T2**
Booklet Code : **B**
16.
$$\int_{x \to 1}^{L_{1}} \frac{\sqrt{5x-4} - \sqrt{x}}{x-1}$$
 is
(1) 3 (2) 2 (3) 4 (4) 1
17. $\log i =$
(1) $\pi/2$ (2) $\pi/4$ (3) $i\pi/2$ (4) $i\pi/4$
18. $\frac{d}{dx} [\log_{7} X] =$
(1) $\frac{1}{x}$ (2) $X \log_{7}^{c}$ (3) $\frac{1}{x} \log^{7}_{c}$ (4) $\frac{1}{x} \log^{7}_{c}$
19. $\frac{d}{dx} [2 \cosh x] =$
(1) $\frac{e^{x} + e^{-x}}{2}$ (2) $\frac{e^{x} - e^{-x}}{2}$ (3) $e^{x} + e^{x}$ (4) $e^{x} - e^{-x}$
20. $\frac{d}{dx} \left[\cos^{-4} \left(\frac{1-x^{2}}{1+x^{2}} \right) \right] =$
(1) $\frac{1}{1+x^{2}}$ (2) $\frac{-1}{1+x^{2}}$ (3) $\frac{2}{1+x^{2}}$ (4) $\frac{-2}{1+x^{2}}$
21. If $x = at^{2}, y = 2at$, then $\frac{dy}{dx} =$
(1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$
22. The derivative of e^{x} with respect to \sqrt{x} is
(1) $\frac{2\sqrt{x}}{e^{x}}$ (2) $2\sqrt{x}e^{x}$ (3) $\frac{e^{x}}{2\sqrt{x}}$ (4) $\sqrt{x}e^{x}$
58

Set Code : T2 **Booklet Code :** R 23. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is (2) x + 20y = 101 (3) x - 20y = 99 (4) x - 20y = 101(1) x + 20y = 9924. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is (1) $\frac{\pi}{4}$ (3) $\tan^{-1}(3)$ (2) $\tan^{-1}(2)$ (4) $\tan^{-1}(4)$ 25. If $u = x^3 y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial v^3} =$ (1) $6(x^3+y^3)$ (2) $6x^3y^3$ (3) 6x³ (4) 6y³ 26. $\int \csc x \, dx =$ (1) $\log(\operatorname{cosec} x + \operatorname{cot} x) + C$ (2) $\log(\cot x/2) + C$ (3) $\log(\tan x/2) + C$ (4) $-\operatorname{cosec} x \cdot \operatorname{cot} x + C$ 27. $\int_{0}^{\frac{\pi}{2}} \cos^{11} x \, dx =$ (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$ 28. $[f^{1}(x).[f(x)]^{n} dx =$ (1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$ 29. $\int \frac{dx}{(x+7)\sqrt{x+6}} =$ (1) $Tan^{-1}(\sqrt{x+6})+C$ (2) $2Tan^{-1}(\sqrt{x+6})+C$ (3) $Tan^{-1}(x+7)+C$ (4) $2Tan^{-1}(x+7)+C$ 6-B

Set Code :	T2
Booklet Code :	B

.

÷.

30.
$$\int \tan^{-1} x \, dx =$$
(1) $x Tan^{-1}x + \frac{1}{2} \log(1 + x^2) + C$
(2) $\frac{1}{1 + x^2} + C$
(3) $x^2 Tan^{-1}x + C$
(4) $x Tan^{-1}x - \log\sqrt{1 + x^2} + C$
31.
$$\int \frac{dx}{1 + e^{-x}} =$$
(1) $\log(1 + e^{-x}) + C$
(2) $\log(1 + e^{x}) + C$
(3) $e^{-x} + C$
(4) $e^{-x} + C$
32.
$$\int \frac{\pi^2}{2} \sin|x| \, dx =$$
(1) 0
(2) 1
(3) 2
(4) -1
33. Area under the curve $f(x) = \sin x \ln[0, \pi]$ is
(1) $4 \sin u \sin x$
(2) $2 \sin u \sin x$
(3) $6 \sin u \sin x$
(4) $8 \sin u \sin x$
34. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - 3y = x$ is
(1) 1
(2) 4
(3) 3
(4) 2
35. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = a \frac{d^2y}{dx^2}$ is
(1) 4
(2) 2
(3) 1
(4) 3
36. The family of straight lines passing through the origin is represented by the differential equation
(1) $ydx + xdy = 0$
(2) $xdy - ydx = 0$
(3) $xdx + ydy = 0$
(4) $xdx - ydy = 0$
7-B

7-B

5i (9)

					Set Cod Booklet Cod	
37.	The differential equitation $\frac{dy}{dx} + \frac{ax + hy + y}{hx + by + y}$	$\frac{g}{f}=0$	is called			
	(1) Homogeneous (2) Exact		Linear	(4)	Legender	19 10
38.	The solution of differential equation $\frac{dy}{dx} =$	e^{-x^2} -	-2xy is			
	(1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$	(3)	$ye^{x^2} = x + c$	(4)	y = x + c	
39.	The complementary function of (D3+D2+D)+1) y	= 10 is			
	(1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$	(2)	$C_1 \cos x + C_2 \sin x$	x + C.	^a e ^x	8
	(3) $C_1 + C_2 \cos x + C_3 \sin x$	(4)	$(C_1 + C_2 x + C_3 x)$	c ²) e ^x		
40.	Particular Integral of $(D-1)^4 y = e^x$ is					
	(1) $x^4 e^x$ (2) $\frac{x^4}{24}e^{-x}$	(3)	$\frac{x^4}{12}e^x$	(4)	$\frac{x^4}{24}e^x$	
	a ¹⁰					
	3 0 0		2 2			
41.	If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 =$		92			
	0 0 3		42			14
	(1) 3I (2) 9I	(3)	271	(4)	811	
	[0 2 1]	120		,	a 10 ₁₀	
42.	If A = $\begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric if	matrix	, then the value	of x is		
	(1) 1 (2) 2	(3)	3	(4)	4	
43.	What is the number of all possible matrices 3×3	with	each entry as 0 o	r l if	the order of m	atrices is
	(1) 64 (2) 268	(3)	512	(4)	256	

		8				Set Code	: T2
						Booklet Code	: B
44.	$If A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$], then $ \mathbf{A} =$	3 3			۰,	2
	(1) 1 .	(2) 2	(3)	3	(4)	4	
45.	The solution of a sys	tem of linear equation	as $2x - \frac{1}{2}$	y+3z=9, x+y	/+ <i>z</i> =	= 6, x - y + z = 2	is
	(1) $x = -1, y = -2,$	z = -3	(2)	x = 3, y = 2, z =	1		
	(3) $x = 2, y = 1, z =$	3	(4)	x = 1, y = 2, z =	3		
46.	$If \frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{A}{r + ai} $	· ·					
	A TU ATU	(2) $-\frac{1}{2ai}, \frac{1}{2ai}$			(4)	$-\frac{1}{ai},\frac{1}{ai}$	8
47.	If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} +$	$\frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then	$\sum_{i=1}^{3} A_i$	is equal to		4	
	(1) A ₂	(2) 2A ₂	(3)	4A ₂	(4)	4A,	
		8 19		3			
48.	The period of the fur		(2)			4-	
	(1) π	(2) 2π	(3)	3π	(4)	4π	
49.	If A+B=45°, then (1-	-cotA). (1-cotB) is					
	(1) 1		(3)	2	(4)	-1	
50.	The value of sin 78°		33		×		
	(1) $\frac{\sqrt{5}+1}{4}$	(2) $\frac{\sqrt{5}+1}{2}$	(3)	$\frac{\sqrt{5}-1}{2}$	(4)	$\frac{\sqrt{5}-1}{4}$	t.

Set Code :	T2
Booklet Code :	B

PHYSICS

- 51. The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?
 - (1) Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t. .

52. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v (2) 2v (3) 3v/4 (4) 4v/3
- 53. The velocity of a freely falling body after 2s is (1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}
- 54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

(1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

55. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be

(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

- 56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts
 - (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
 - (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
 - (3) In the backward direction on both the front and the rear wheels
 - (4) In the forward direction on both the front and the rear wheels

Set Code :	T2
Booklet Code :	

57. In a perfectly inelastic collision, the two bodies

- (1) strike and explode (2)
 - explode without striking
- (3) implode and explode (4) combine and move together

58. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is

(1) zero

- (2) positive
- (3) negative (4) increasing uniformly with time
- 59. Consider the following two statements:
 - A: Linear momentum of a system of particles is zero.
 - B: Kinetic energy of a system of particles is zero.

Then

- (1) A implies B & B implies A
- (2) A does not imply B & B does not imply A
- (3) A implies B but B does not imply A
- (4) A does not imply B but B implies A
- 60. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)
 - (1) 4s (2) 5s (3) 8s (4) 10s
- 61. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1) $T\sqrt{n}$

(3) *n*T

(4) T

62. When temperature increases, the frequency of a tuning fork

(2) $\frac{T}{\sqrt{n}}$

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

													Bool	Set Co		
63.	lfa	simpl	e harm	onic m	otio	n is r	epre	sent	ed by	$\frac{d^2x}{dy^2} + 0$	$\alpha x = 0$, is	ts time p	eriod	is		
	(1)	2π√	Γα	(2	2)	2πα	e P		(3)	$\frac{2\pi}{\sqrt{\alpha}}$		(4)	$\frac{2\pi}{\alpha}$		2	
64.			hall ha absorpt							ired to	have re	verberat	ion tir	ne of 1	.5 sec	conds.
	(1)		w-m ²	`					(2)	82.5	0 w-m ²					
	(3)	8.25	0 w-m ²				Ċ,		(4)		5 w-m ²	÷			4.6	
65.	Toa	bsorb	the sou	nd in a	hall	whi	ch o	fthe	follow	ing an	e used					
	(1)		ses, sto		÷.,						oets, curt	ains				
	(3)		shed su						(4)	-	forms				2	
66.	IfN	repres	ents av	agadro	's nu	umbe	r, th	en tl	ne num	ber of	molecul	es in 6 g	mofh	vdroge	n at N	JTP is
	(1)		÷		2) 3				(3)		1 . 		N/6			
67.	The	mean	translat	tional k	cinet	ic en	ergy	of	a perfec	ct gas i	nolecule	at the t	emper	ature T	K is	- 25
18	(1)	$\frac{1}{2}kT$		(2) k	T		(n.	(3)	$\frac{3}{2}kT$		(4)	2kT			
68.	The	amour	tofhe	at aive	nto	bod	hend	hich	raicac	ite tom	perature	, h., 190		÷		a^{-2}
00.	(1)		equiva		1100	a 000	iy wi	inch	(2)		nal heat					
	(3)		fic heat		1					the second second	erature g	· · ·			2 2	2
69.	Durin absol	ng an a lute ter	adiabat mperat	ic proc ure. Th	ess; ne rat	the p tio C	press	sure for	of a ga gas is	s is fo	und to be	e propor	tional	to the	cube	of its
	(1)	$\frac{3}{2}$		(2)	$) \frac{4}{3}$	1			(3)	2	- - -	(4)	<u>5</u> <u>3</u>			
							े. स्त					3				
					÷							515 10				
									12-B		140	12				

Set Code :	T2
Booklet Code :	B

70. Cladding in the optical fiber is mainly used to

- (1) to protect the fiber from mechanical stresses
- (2) to protect the fiber from corrosion
- (3) to protect the fiber from mechanical strength
- (4) to protect the fiber from electromagnetic guidance

71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be

- (1) same as that of latent heat
- (2) same as that of pressure
- (3) same as that of work
- (4) same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is (1) $[ML^2T^2I^2]$ (2) $[ML^{-2}T^4I^2]$ (3) $[M^{-1}L^{3}T^{3}I]$ (4) $[M^{-1}L^{-2}T^{4}I^2]$
- 73. If *l*, *m* and *n* are the direction cosines of a vector, then

(1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$ (4) lmn=1

- 74. The angle between i+j and j+k is (1) 0° (2) 90° (3) 45° (4) 60°
- 75. A particle is moving eastwards with a velocity of 5 ms⁻¹. In 10 seconds the velocity changes to 5 ms⁻¹ northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west (2) zero (3) $\frac{1}{2}$ ms⁻² towards north (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

13-B

Set Code :	T2
Booklet Code :	B

CHEMISTRY

76.	Pota	ssium metal and	d potas	sium ions					
	(1)	both react with	water		(2)	have the same	numbe	er of protons	
	(3)	both react with	h chlor	ine gas	(4)	have the same	electro	onic configurat	tion
77.	stand	dard flask. 10 ml	ofthis	de were dissolve solution were pip on. The concentra	etted	out into another	flask an	nd made up with	h distilled
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	
78.	Con	centration of a	1.0 M s	solution of phosp	horic	acid in water is	6		
		0.33 N		1.0 N		2.0 N	(4)	3.0 N	
79.	Whi	ch of the follow	ing is a	a Lewis acid?					
	(1)	Ammonia	-		(2)	Berylium chlo	oride		
	(3)	Boron trifluor	ide	18	(4)	Magnesium of	xide		
20	W/L:	ah af tha fallow	ing co	nstitutes the com	none	nts of a buffer s	olution	12	
80.	(1)			nd potassium hyd			oration		
	(1) (2)	Sodium acetat			aroan			5	
	(2) (3)			and sulphuric aci	id				
	(4)	-	-	and supharie de		· · ·			
	(4)	Calcium entor	ine and	i culoiuni uccuito		*			
31.	Whi	ch of the follow	ving is	an electrolyte?		a .			
		Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
32.		culate the Stand $Cu/Cu^{+2} = (-) 0.3$		nf of the cell, Cd	/Cd+2	//Cu ⁺² /Cu giver	n that E	$C^0 Cd/Cd^{+2} = 0$.44V and
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
						, sing Platinum e	lectrod	es. After elect	rolvsis
33.	Asc	lution of nickel	chlori	de was electroly	sed us	sing r latinum c	leenou		iorjono,
83.		lution of nickel nickel will be							
83.	A so (1) (3)	nickel will be	deposi	de was electroly ted on the anode ed at the anode	(2)	Cl ₂ gas will be	e libera		ode

								Set Code : T2
								Booklet Code : B
84.	Whi	ich of the follow	wing me	tals will underg	go oxid	ation fastest?		1
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron
85.	Whi	ich of the follow	wing ca	nnot be used for	r the ste	erilization of dri	inking	water?
	(1)	Ozone			(2)	Calcium Oxyo	hlorid	e
	(3)	Potassium Ch	loride		(4)	Chlorine wate	r	
86.				가장 옷을 다 가지 않는 것 같은 것을 다 있었다. 것 같은 것 같	mg/litr	e of magnesium	sulpha	ate. Then, its hardness in
		ns of calcium ca		-	(2)	0.60 mm	(4)	2.40 ppm
	.(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm
87.	Soda	a used in the L-	S proce	ss for softening	gofwa	ter is, Chemical	lly.	
	(1)	sodium bicart	onate		(2)	sodium carbor	nate de	cahydrate
2	(3)	sodium carbo	nate		(4)	sodium hydro	xide (4	0%)
88.	The	process of cem	entatio	n with zinc pow	der is k	cnown as		
	(1)	sherardizing	(2)	zincing	(3)	metal cladding	g (4)	electroplating
89.	Carr	rosion of a met	al is fas	test in				e
	(1)	rain-water	(2)	acidulated wat	ter (3)	distilled water	(4)	de-ionised water
90.	Whi	ch of the follow	ving is	a thermoset pol	ymer?	2 ¹²		
*	(1)	Polystyrene	U	.	(2)	PVC		
	(3)	Polythene		2 120 - 12	(4)	Urea-formald	ehyde r	resin
01	Cha	mically, neopre	maic		5*			2)
<i>.</i>	*				(2)	polyacetylene		
	(1)	polyvinyl ben				-		
	(3)	polychloropro	ene		(4)	pory-1,5-butat	nene	
92.	Vulc	canization invol	ves hea	ting of raw rubb				
	(1)	selenium eler	(************************************		(2)	elemental sulp		er•• 15 54 54 54 564
	(3)	a mixture of S	e and e	emental sulphu	ır (4)	a mixture of se	eleniun	n and sulphur dioxide
					15-B			

Set Code :	T2
Booklet Code :	B

93.	Petrol largely contains		÷
	(1) a mixture of unsaturated hydrocarbo	ns C,-	C.
	(2) a mixture of benzene, toluene and xy		0
1	(3) a mixture of saturated hydrocarbons		
	(4) a mixture of saturated hydrocarbons		
		0 0	0
94.	Which of the following gases is largely re	sponsil	ble for acid-rain?
	(1) $SO_{2} \& NO_{2}$		CO ₂ & water vapour
	(3) CO, & N,	(4)	N ₂ & CO ₂
95.	BOD stands for		
	(1) Biogenetic Oxygen Demand	(2)	Biometric Oxygen Demand
	(3) Biological Oxygen Demand	(4)	Biospecific Oxygen Demand
			•
96.	The valency electronic configuration of P	hospho	orous atom (At.No. 15) is
90.	(1) $3s^2 3p^3$ (2) $3s^1 3p^3 3d^1$	(3)	$3s^2 3p^2 3d^1$ (4) $3s^1 3p^2 3d^2$
	(1) 55 Sp (=) 11 J		
97.	An element 'A' of At.No.12 combines with	n an elei	ment 'B' of At.No.17. The compound formed is
	(1) covalent AB (2) ionic AB_2	(3)	$covalentAB_2$ (4) ionic AB
			· · ·
98.		om of 56	$_{6}Ba^{137}$ is
	(1) 56 (2) 137	(3)	193 (4) 81
			11. 6-
99.	, , ,		
	(1) decrease in its freezing point	(2) (4)	방법은 이번 전에 이번 이번 이렇게 한 것을 하는 것을 수 있는 것을 하는 것을 하는 것을 하는 것을 수 있다.
	(3) increase in its boiling point	(4)	decrease in its boning point
1.0/). In the HCl molecule, the bonding between	hvdro	ogen and chlorine is
100	 (1) purely covalent (2) purely ionic 		polar covalent (4) complex coordinate
	(1) putery contactine (2) putery tonic	(-)	 A statistic s

16-B

Set Code : T2 Booklet Code : B

ELECTRICAL AND ELECTRONICS ENGINEERING

101. In a given below circuit, at resonance I_p is equal to

- (1) 0A(2) 10A(3) 5A(3) 5A(1) 5A(2) 5A(3) 5A(3) 5A(4) 5A(5) 5A(
- (4) 0.5A

102. An alternating current has a peak value of 2A. If its Peak Factor is $\sqrt{2}$ and its form factor is

 $\frac{\pi}{2\sqrt{2}}$, then its average value is (1) $\frac{8}{\pi}A$ (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$

103. The power factor of an incandescent bulb is

(1) 0.8 lagging (2) 0.8 leading (3) unity (4) zero

104. The power factor of a circuit comprising resistance R and reactance X in series is

- (1) $\frac{R}{\sqrt{R^2 + X^2}}$ (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$
- 105. The working principle of a Transformer is
 - (1) Electromagnetism (2) Conduction
 - (3) Energy transfer (4) Mutual induction
- 106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1 Ω when referred to secondary is
 - (1) 150Ω (2) 0.02Ω (3) 0.004Ω (4) 2.5Ω
- 107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW
 - (1) 100 kVA (2) 70.7 kVA (3) 50.5 kVA (4) 25.2 kVA

17-B

Set Code :	T2
Booklet Code :	B

108.	In hi	gh frequency tra	nsfor	ners, the m	aterial u	sed	for core is					
		Ferrite		Iron			Cast iron	. (4)	Silica			
109.	Buch	nholz relay is use	d to							8 fi		
		identify faults										
	(2)	rectify the fault										
	(3)	trip-off connect	tions v	when fault	exists							
	(4)	clears the fault							1:22			
110.	Dist	ribution transfor	mers	are design	ed to ke	ep	core losses mi	nimum	and copper	losses are		
		lively less important because										
	(1)	throughout the day while copper loss occur only when the secondary is supplying the load										
	(2)	To ensure maxin	mum	All-day effi	ciency		N 540					
1												
	(4)	Greater core los	sses w	ill heat up	the oil o	of th	e transformer	rapidly				
111.		ch one of the fol lation of an alter		g methods	gives m	ore	accurate resul	t for d	etermination	of voltage		
	(1)	MMF method			(2	2)	Synchronous impedance method					
	(3)	Potier triangle	netho	d	(4	4)	ASA method					
112	LL	rogen is used in l	0700	Iternators	mainly to	0	* <u>-</u>		C+			
112.		reduce distortio					cool the mach	ine				
	(1) (3)	strengthen the r					reduce eddy c		losses	*		
	(3)	strengthen the h	nagire	the mora		.,						
113.	The	frequency of em	fgene	rated in an	8-pole a	lter	mator running a	at 900 r	pm is			
	(1)	50 Hz	(2)	120 Hz	(3	3)	90 Hz	(4)	60 Hz			
114.		angle between sy		onously rota	ating stat	tor	flux and rotor p	oles of	a synchrono	ous motor is		
	(1)	Synchronizing	(2)	Slip	(3	3)	Power factor	(4)	Torque			

Set Code :	T2
Booklet Code :	B

- 115. If θ_e be the electrical angle and θ_m be the mechanical angle and P be the number of poles of a synchronous motor, then which one of the following relation is true?
 - (2) $\theta_e = (P/2) \times \theta_m$ (1) $\theta = P \times \theta_m$ (4) $\theta = P/\theta_{-}$ (3) $\theta = \theta_m/P$
- 116. The essential condition for parallel operation of two single phase transformers is that they should have same
 - (1) Polarity (2) KVA rating (3) Voltage ratio (4) Percentage impedance
- 117. The V-curve of a synchronous motor is a plot of
 - (1) State current versus stator power factor
 - (2) Stator current versus rotor current at all loads
 - (3) Stator current versus rotor currents when power delivered is constant
 - (4) Stator current versus power delivered

118. A wound rotor induction motor runs with a slip of 0.03 when developing full load torque. Its rotor resistance is 0.25 ohm per phase. If an external resistance 0.50 ohm per phase is connected across the slip rings, what is the slip for full load torque?

- (1) 0.03 (2) 0.06 (3) 0.09 (4) 0.1
- 119. The torque developed in a three phase induction motor depends on
 - (1) Stator flux and rotor current (2) stator flux and stator current
 - (3) stator current and rotor flux (4) rotor current and rotor flux

120. A single phase ac induction motor is not self starting because it has

- (1) No slip rotor is short circuited
- (3) high intertia (4) absence of rotating magnetic field

121. A single phase winding in a single phase motor produces

- (1) an alternating magnetic field (2) a stationary magnetic field
- (3) a rotating magnetic field
- (4) a steady magnetic field
- 19-B

								Set C	ode:	T2
		8) -						Booklet C	ode :[B
122	Und	er no-load cond	litions	nower factor of	an in	duction motor is	ahou			
122.		0.2 lag		0.9 lag		Unity		0.5 lead		
	(-)		(-)		(-)					
123.	Ofa	ll the plants, mir	imum	quantity of fuel	used i	s required in	. plan	nt.		
	(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclear		
				: 21	•					
124.				of a Thermal Por						
	(1)	η_{boiler}	(2)	$\eta_{\text{boiler}} \times \eta_{\text{generator}}$	(3)	$\eta_{\text{generator}} \times \eta_{\text{turbine}}$	(4)	$\eta_{turbine} \times \eta_{turbine}$	boiler	(1997) (
125	The	effect of water h	amme	er can be minimiz	red by	using		8		
120.	(1)	Spill way		Anvil	- 100 million (* 1	Surge Tank	(4)	Draft tube	•	8
						J.				
126.	ln a	diesel power pla	nt sus	pended impuritie	s in th	ne fuel are remove	ed by	,		
	(1)	Cyclone separa	ators		(2)	Electrostatic se	parat	tors		
	(3)	Fabric filters	10	(a)	(4)	Strainer-				8
	с. 									
127.				a circuit breaker i			(4)	37-14	۰.	
	(1)	Ampere	(2)	Volt-Ampere	(3)	Watt	(4)	Volt		
120	1	rcuit breaker is o	econti	ally						
120.	(1)	An arc extingu	* *	ally			20			
	(2)	A current intern		device	2					
	(3)	A power factor								
	(4)	· · · · · · · · · · · · · · · · · · ·		zing the effect of	trans	ients				
129.	Mho	relay normally	is used	d for protection	of					
	(1)	Long transmiss	sion lin	nes						
	(2)	Medium Trans							•	
	(3)	Short transmiss		nes						
	(4)	No length crite	rion	2						
						a. 3		1		-
					D D					(FFF)

20-B

					2		Set Code	: T2
							Booklet Code	: B
130. Th	e scheme ad	opted for bus-	har protecti	on is				
(1)		e protection		(2)	differential	protect	ion	
	• •	ent protection		(4)		5. P.		
(5)	over curv	in protection		(4)	reverse pov	ver prote	ection	
131. Du	e to the ferra	ri effect on lo	ong overhea	d lines				
(1)		end voltage is						
(2)		end voltage is			177. I			
(3)		end voltage is				<u>}4</u>		
• (4)		end voltage is	S. 1977		0			
132. Cor	ona occurs b	etween two t	ransmission	lines w	hen they are			
(1)	closely spa	aced		(2)	widely space	ed		
(3)	having hig	h potential dif	ference	(4)	carrying DC	power		
		e of a transmi (2) √			•	. (4)	$1\sqrt{LC}$	
124 77			÷					
		ance for short	transmissi		and the state of the second second		· · · · ·	
(1)	less than 8			(2)	80 km-250 l			
(3)	more than 2	250 km		(4)	150 km-300	km		
135 The	resistance of	f the line		54 -				
(1)		ith increase in	n frequency	(2)	decreases wi	th incre	ase in frequency	Υ.
(3)	4	ent of frequer		(4)			ase in frequency	
	is macpene	ent of neque	loy	(+)	mercases wr	unuccica	ase in frequency	
136. In H	VDC Transn	nission System	AC is conv	verted to	DC using		3.* 	
	Rectifier	(2) Inv			Chopper	(4)	Cycloconverter	
					FP	(1)	- y chocon venter	
137. Susp	ension type	insulators are	used for vol	ltages b	eyond		¥.	
with the state of	220 V	(2) 40		(3)	IIKV	(4)	33 KV	
				21-B				(EEE)
								(LEC)

				а с	Set Booklet	Code : T2 Code : B
138.	Pow	er Factor of Industrial loads is generall	у			
	(1)	Unity (2) Leading	(3)	Lagging (4)	Zero	
139.	Pole	mounted transformer stations are mea	nt for			с.
	(1)	Primary transmission	(2)	Primary distribution		
	(3)	Secondary transmission	(4)	Secondary distribution	on .	
140.	Tran	smission lines are transposed to		54 18 - 54		
	(1)	Reduce copper loss			8	
	(2)	Reduce skin effect				
	(3)		tion li	ines		8 N - 23
	(4)	Present short circuit between conduct				
	(4)				1.0	
141.	The	units for specific energy consumption	relate	d to traction is		
					•	
	(1)	$\frac{\text{Watt - Hour}}{\text{Tonne - km}} (2) \frac{\text{Watt - Hour}}{\text{km}}$	(3)	Joules/Sec (4)	Watt	
142.	In K	ando system of track electrification_		is converted into		-
	(1)	single phase, dc	(2)	dc, single phase	10	3:
	(3)	single phase, three phase	(4)	three phase, single p	hase	*
143.		ain has a scheduled speed of 60 kmph be is if the duration of stop i			km apart.	The actual run
	(1)	60 sec (2) 360 sec	(3)	240 sec (4)	300 sec	
144.		rage speed of a train is dependent on				
5	(1)	Distance between two stops & run time				
	(2)	Run time & stop time		A 12		
	(3)	Stop time & acceleration				
	(4)	Acceleration & deceleration				

22-B

					Set Code :	T2					
					Booklet Code :	B					
145	. The	electric motor used for traction work	should	d have							
	(1)		(2)	High starting torque							
	(3)	Rise in speed with increase in load	• •	No braking capability	1						
146	. Tra	ctive effort of an electric locomotive ca	an be i	ncreased by							
	(1)	Increasing the supply voltage									
	(2)	Increasing the speed									
	(3) Increasing the dead weight over the driving axles										
	(4)	Using high rating motors		unito							
	(.)	e emgingi runng meters			*						
147.	Trac	tive effort required for a train going do	wn fre	om an ungradiant is							
14	(1)	less than tractive effort on level track		-							
	(2)	more than tractive effort on level trac									
	(2) more than tractive effort on level track(3) equal to the tractive effort on level track										
	(4)	independent of mass of the train	ien								
	(.)	independent of muss of the train			4						
148.	The	area under speed-time curve of a train 1	repres	ents							
	(1)	average speed	(2)	average acceleration							
	(3)	distance travelled	(4)	average velocity	61 [°]						
149.	Ast	ne number of wire guage increases the	cross	sectional area of wire							
	(1)	increases	(2)	remains same							
	(3)	becomes neglible	(4)	decreases							
	(3)	becomes negrote	(4)	uccicases							
150.	Whi	ch of the following wiring is not visible	outsi	de?							
	(1)	conduit wiring	(2)	cleat wiring							
	(3)	casing and capping wiring	(4)	concealed wiring							
151.	Resi	stance of earth system of power station	is sho	uld not exceed the limi	it of						
	(1)	0.5 ohms (2) 2 ohms	(3)	1 ohms (4)	5 ohms						
				⇒ ,							
		2	3-В			(EEE)					
						1000000000000					

								Set Coo Booklet Coo	_
152.	In el	ectrical instal	lations t	he fuse is alwa	ays conn	ected in		wire.	
	(1)	earth	(2)	neutral	(3)	phase	(4)	ground	
153.	The	transistor use	d in amp	lifier circuits	operates	in			8
	(1)	Active region	n		(2)	Saturation reg	ion		
	(3)	Cut off regio	on		(4)	Reverse regio	n		
154.	The	gain of an am	plifier is	given by the fo	ollowing	formula			
	(1)	G(dB) = 101	log (p _{in} /p	o _{ut})	(2)	G(dB) = 10 location	g.(pout)		
		G(dB) = 10			(4)	G(dB) = 10 lo	og (p _{in})		
155.	The	number of dic	des that	are used in ha	lf wave r	ectifier and ful	l wave	bridge rectifie	er are
	(1)	1,2	(2)	1,4	(3)	2,4	(4)	. 2,1	
156.	The 50H	-	e of a ful	l wave rectifier	fed fron	an ac source of	fpeak v	oltage, V _m and	l frequen
	(1)	V_m/π	(2)	$2V_m/\pi$	(3)	$V_m/\sqrt{2}$	(4)	V_/2	
157.	Ina	transistor whi	ch of the	following lay	er is ligh	tly doped		а 1	
	(1)	Emitter	(2)	Collector	(3)	Drain	(4)	Base	
150	Zen	er diode regula	ates				2		
130.	(1)	Voltage	(2)	Current	(3)	Resistance	(4)	Power	
	(1)								
		frequency of	oscillatio	on of wein brid	dge oscil	lator in Hz is			
159.	The	frequency of $1/2 \pi RC$		on of wein brid 2 π RC	-	lator in Hz is 1/RC	(4)	R/C	
159.	The (1)	1/2 π RC	(2)	2 π RC	-		(4)	R/C	
159. 160.	The (1) XY		(2)	$2 \pi RC$ YZ	-	1/RC	(4) (4)		5

			2					Set Code : T2 Booklet Code : B
161.	The	2's complemen	t of the	e number 1001 l	100 is	6		(h
	(1)	0110 0011	(2)	0110 0100	(3)	1001 1100	(4)	1001 1101
162.	The	bolean expressi	on for	NOR gate with i	nputs	A and B is		
	(1)	A+B	(2)	A.B	(3)	A+B	(4)	$\overline{\mathbf{A} + \mathbf{B}}$
163.	A D.	AC with 8 input	bits ha	asre	solutio	on compared wit	h DA	C with 4 input bits.
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite
164.	The	power electroni	c devi	ce, Silicon Cont	rolled	Rectifier has		
	(1)	Two junctions	and th	ree layers	(2)	Three junction	s and t	three layers
	(3)	Three junction	s and f	four layers	(4)	Two junctions :	and tw	vo layers
165.	Whi	ch one of the fol	llowin	g is a bidirectior	nal Co	ntrolled switch		
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac
66.	If the	e gate current of	an SC	R is increased, i	ts forv	vard break over v	voltag	e V _{BO} will
	(1)	Increase	(2)	Decrease	(3)	Not be affected	1 (4)	Be infinity
67.	Ìn an	UJT triggering	circui	t for SCR, pulse	s are g	generated at		of UJT.
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2
168.	lnał	alf wave contro	olled re	ectifier feeding l	R-L lo	ad, the range of	firing	angle of thyristor is
	(1)	$0 \le \alpha \le 180^{\circ}$	(2)	$90 \le \alpha \le 180^{\circ}$	(3)	$0 \le \alpha \le 90^{\circ}$	(4)	$0 \leq \alpha \leq 360^{\circ}$
		DC output volta	ge, V _o	of a basic chopp	er circ	cuit with input vo	oltage,	, V_{in} and duty cycle, δ is
	(1)	$V_{o} = V_{in} \times \delta$	(2)	$V_o = V_i / \delta$	(3)	$V_o = V_i / (1 - \delta)$	(4)	V_=V_in

Set Code :		
Booklet Code :	B	-

								Booklet	Code	B
170. An	AC regulator pro	ovides								
	Variable frequ		xed may	gnitudeAC						
(2)	Fixed frequen						2			
(3)	Fixed frequen									
(4)	Variable frequ	ency, va	ariable	nagnitude	٩C					
171. The	output voltage	ofasing	gle phas	se bridge in	ver	ter is				
(1)	Square wave			s _ 3	(2)	Sinusoida	lwave			
(3)	Constant dc				(4)	Triangula	wave			
172. Two	o quadrant opera	tion of	dc mot	or can be o	btai	ned if it is t	fed from a	13.		
(1)						Half cont	rolled conv	ertor/		
(3)	Half wave con	vertor		((4)	Fully con	trolled con	vertor		
								•		
	controlling the							ntained co	nstant f	for
(1)	Constant air ga	-				Constant	•			
(3)	Varying the air	gap flu	x	(4)	Variable r	esistance			
		×						101		
	I microcontrolle									
(1)	16, 8	(2)	8, 8	(3)	8, 16	(4)	16, 20		
176 114						·				
	ch of the follow	-						MOU		
(1)	XCH	(2)	PUSH		3)	ADD	(4)	MOV		
176 Inter		0051								
	mal memory of				nsi	SIS OI				
	128 bytes of R/									
(2)	4 K bytes of R.									
(3)	2 K bytes of RA	ana tana marina								
(4)	128 bytes of R	AIVI, 4)	x bytes	OI KOW					a.	2
					3 ×					
				26-1	3				17	(EEE)

						Cat	Cada	T
							Code :	12 D
						Booklet	Code :	B
177. Th	e highest prior	ity interrupt is						
(1)	TF1	(2) IE1	(3)	TF0	(4)	IE0		
178. Per	centage Volta	ge regulation of	a transmission	line is given by	v	Υ.,		
	(EE_)/E_*	and the same product of the second		(E _f -E _s)/E _f *10				ж.
	$(E_{s} - E_{r})/E_{s}^{*}$							
(3)	$(E_s - E_r)/E_s$	100	(4)	$(E_{r}-E_{s})/E_{s}*10$	00			
179. In a	a main line se	rvice of electric	traction system	1	12			
(1)	Distance be	tween two stops	is very small					
(2)	Acceleratio	n and retardation	n periods are sn	nall				
(3)	Free runnin	g and coasting p	eriods are short	н ^с				
(4)	Acceleratio	n and retardation	n periods are lo	ng				8 I
180 For	SCP du/dt p	rotection is achie	aved by connec	ting			24	
(1)	L in series v		(2)	RL in series v	- vith SC	R		
(1)	RC in series		(2)	RC in parallel				
(5)	ite in series	what ber	. (4)	ice in paranet	with 0	CK .		
181. The	e effective resi	stance between	terminals A and	B in the below	figure	is		8 10
(1)	r		51557 4 576 inc		-			
(2)	2r	4		в				
(3)	3r		the lot of the	1.				
(4)	4r		1					
192 161	h a 4h a	C h + 4 + + + + + + + + + + + + + + + + +		ha watantial dif	Fanan a a	a the LICL		
162. II I unit		C be the capacit	ance and v be t	ne potential dif	ierence	s, the I/C v	will hav	/e the
1.0.000	Time	(2) Power	(3)	Frequency	(4)	Reactive	Power	
					11			
183. In a	series R-C cir	cuit excited by a	DC voltage E	, the initial curr	ent is		10	
(1)	E	(2) 0	(2)	E		C		3
(1)	R	(2) 0	(3)	С	(4)	Е		
			27-В	0				(EEE)
			5772.555			-		

								Set Co	de : T2
								Booklet Co	de : B
()	1)		e length	net can be incre of the conducto r of turns					ictor
		is a unit of Flux	(2)	Field strength	(3)	Current	(4)	Flux densit	у
(1)	rding to joule' square of the potential diffe	resistan	eat produced by	an ele (2) (4)	ctric current i square of the square of the	e current	tional to	125 18
() () ()	1) 2)	Thevenin's equ 1_{Ω} 2_{Ω} 4_{Ω} Infinity	ivalent	resistance R _{th} fo	or given		•		2 7 2
188. I			npound (2)	generator, the Commutator		field turns are Interpole	provide (4)	d on Main pole	
() ()	1) 2)	to change alte to improve co for easy speed	rnating mmuta d contro	22-1 Pk	t curre	ent	.4 1 1		् 20 ²¹ हो। ा
	fNi [1)	s the speed and $\frac{NP}{60}$		hber of poles, the $\frac{NP}{120}$		requency of ind $\frac{NP}{2}$		a.f in DC gene NP	erator will be
				λ.,	28-B				(EEE)

				ħ	88			Set Code : T2 Booklet Code : B
191.	The	demagnetizing f	flux in o	dc generator				
	(1)	Increases e.m.	f		(2)	Decreases e.	m.f	
	(3)	Increases spee	d.		(4)	Decreases sp	beed	
92.		be the torque attion is valid befo			ent for	a dc series mo	tor, then	which of the followin
	(1)	$T_a \alpha I_a$	(2)	$T_a \alpha (1/I_a)$	(3)	$T_a \alpha (I_a^2)$	(4)	$T_a \alpha (1/I_a)^2$
93.	Wha	at will happen if	the bac	k e.m.fofaDC	motor	vanishes sudd	lenly	
	(1)	The motor will			(2)	The motor w		nue to run
	(3)	The armature n		n	(4)	The motor w	ill run ne	oisy
					1.1	3. 9		eger 4 en l
94.	The	mechanical pow	ver dev	eloped by a DC	motor	is equal to		
	(1)	Power input +	losses		(2)	Back e.m.f×	armatur	re current
	(3)	Power output	× losse	s	(4)	Power output	t × effic	iency
95.	Neg			Contraction of the second second	y a seri	ies motor is in	creased	from 10A to 12A, th
95.	Neg	lecting saturation entage increase	in its t	Contraction of the second second		ies motor is in 30.5%	creased (4)	from 10A to 12A, th 16.6%
	Neg perc (1)	lecting saturation entage increase 20%	in its to (2)	orque is 44%				
	Neg perc (1) Dyn	lecting saturation entage increase 20% amometer type i	in its t (2) nstrum	orque is 44% ent have	(3)	30.5%	(4)	
	Neg perc (1)	lecting saturation entage increase 20%	in its to (2) nstrum at the l	orque is 44% ent have beginning			(4) he end	
96.	Neg perc (1) Dyn (1) (3)	lecting saturation entage increase 20% amometer type in Cramped scale Cramped at the	in its to (2) nstrum at the l middl	orque is 44% ent have beginning e	(3) (2) (4)	30.5% Cramped at th Uniform scal	(4) he end le	16.6%
96.	Neg perc (1) Dyn (1) (3) To n	lecting saturation entage increase 20% amometer type in Cramped scale Cramped at the	in its to (2) nstrum at the l middl of 10 n	orque is 44% ent have beginning e nV at 75 Hz, wl	(3) (2) (4)	30.5% Cramped at th Uniform scal	(4) he end le	16.6%
96. 97.	Neg perc (1) Dyn (1) (3) To n (1)	lecting saturation entage increase 20% amometer type in Cramped scale Cramped at the measure a signal cathode ray os	in its to (2) nstrum at the l middl of 10 n cillosc	orque is 44% ent have beginning e nV at 75 Hz, wl ope	(3) (2) (4) hich on	30.5% Cramped at the Uniform scale of the follow	(4) he end le ving inst	16.6%
96.	Neg perc (1) Dyn (1) (3) To n (1) (3)	lecting saturation entage increase 20% amometer type in Cramped scale Cramped at the measure a signal cathode ray os	in its to (2) nstrum at the l middl of 10 n cillosc	orque is 44% ent have beginning e nV at 75 Hz, wl ope er	(3) (2) (4) hich on (2) (4)	30.5% Cramped at th Uniform scal the of the follow VIVM	(4) he end le ving inst	16.6%

29-B

Set Code :	T2
Booklet Code :	

199. The voltage coil of a single phase house energy meter

(1) is highly resistive

(2) is highly inductive

(3) is highly capacitive

(4) has a phase angle equal to load power factor angle

200. The effective value of a triangular wave is

(1) Max. value

(2) $\sqrt{3}$ (Max.value)

(3) $\frac{\sqrt{3}}{\text{Max. value}}$

(4) $\frac{\text{Max. value}}{\sqrt{3}}$